Functional involvement of rat organic anion transporter 3 (rOat3; Slc22a8) in the renal uptake of organic anions.

نویسندگان

  • Maki Hasegawa
  • Hiroyuki Kusuhara
  • Daisuke Sugiyama
  • Kousei Ito
  • Shirou Ueda
  • Hitoshi Endou
  • Yuichi Sugiyama
چکیده

Our previous kinetic analyses have shown that the transporter responsible for the renal uptake of pravastatin, an HMG-CoA reductase inhibitor, differs from that involved in its hepatic uptake. Although organic anion transporting polypeptides are now known to be responsible for the hepatic uptake of pravastatin, the renal uptake mechanism has not been clarified yet. In the present study, the involvement of rat organic anion transporter 3 (rOat3; Slc22a8) in the renal uptake of pravastatin was investigated. Immunohistochemical staining indicates the basolateral localization of rOat3 in the kidney. rOat1- and rOat3-expressed LLC-PK1 cells exhibited specific uptake of p-aminohippurate (PAH) and pravastatin, respectively, with the Michaelis-Menten constants (Km values) of 60 microM for rOat1-mediated PAH uptake and 13 microM for rOat3-mediated pravastatin uptake. Saturable uptake of PAH and pravastatin was observed in kidney slices with Km values of 69 and 11 microM, respectively. The difference in the potency of PAH and pravastatin in inhibiting uptake by kidney slices suggests that different transporters are responsible for their renal uptake. This was also supported by the difference in the degree of inhibition by benzylpenicillin, a relatively selective inhibitor of rOat3, for the uptake of PAH and pravastatin by kidney slices. These results suggest that rOat1 and rOat3 are mainly responsible for the renal uptake of PAH and pravastatin, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression and functional characterization of rat organic anion transporter 3 (rOat3) in the choroid plexus.

We reported previously that an efficient efflux system for benzylpenicillin (PCG) is located on the choroid plexus (CP). In this study, we investigated the involvement of rat organic anion transporter 1 (rOat1; Slc22a6) and rOat3 (Slc22a8) in the uptake of PCG and p-aminohippurate (PAH) by the CP. Western blot analysis indicates the expression of rOat3, but not rOat1, on the CP, and immunohisto...

متن کامل

Contribution of organic anion transporters to the renal uptake of anionic compounds and nucleoside derivatives in rat.

Our previous kinetic analyses have shown that rat organic anion transporter 1 (rOat1; Slc22a6) and rOat3 (Slc22a8) are responsible for the renal uptake of p-aminohippurate and pravastatin, respectively. In this study, their contribution to the renal uptake of organic anions and nucleoside derivatives was examined by investigating the uptake by rOat1- and rOat3-expressing cells and kidney slices...

متن کامل

Carrier-mediated uptake of H2-receptor antagonists by the rat choroid plexus: involvement of rat organic anion transporter 3.

The choroid plexus (CP) acts as a site for the elimination of xenobiotic organic compounds from the cerebrospinal fluid (CSF). The purpose of the present study is to investigate the role of rat organic anion transporter 3 (rOat3; Slc22a8) in the uptake of H(2)-receptor antagonists (cimetidine, ranitidine, and famotidine) by the isolated rat CP. Saturable uptake of cimetidine and ranitidine was ...

متن کامل

Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells.

The mechanism that removes homovanillic acid (HVA), an end metabolite of dopamine, from the brain is still poorly understood. The purpose of this study is to identify and characterize the brain-to-blood HVA efflux transporter at the rat blood-brain barrier (BBB). Using the Brain Efflux Index method, the apparent in vivo efflux rate constant of [3H]HVA from the brain, k(eff), was determined to b...

متن کامل

Prostaglandin E2 inhibits its own renal transport by downregulation of organic anion transporters rOAT1 and rOAT3.

Prostaglandin E2 (PGE2) is the principal mediator of fever and inflammation. Recently, evidence emerged that during febrile response, PGE2 that is generated in the periphery enters the hypothalamus and contributes to the maintenance of fever. In a rat model of fever generation, peripheral PGE2 is increased, whereas clearance by metabolism of peripheral PGE2 is downregulated. The major route of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 300 3  شماره 

صفحات  -

تاریخ انتشار 2002